Comparison of Trapezoidal and Triangular Membership Functions of Two Servers Queuing Models with Fuzzy Service Times

Assoc. Prof. Dr. Aysen Apaydin
Ankara University, Faculty Of Science, Department of Statistics, Ankara, Turkey

Instr. Ozlem Aydin
Baskent University, Faculty Of Health Sciences, Department of Healthcare Management, 06530, Ankara, Turkey

1. Introduction

Traditional queuing models need to be defined by exactly defined distributions. However, for the queuing applications it is difficult define an exact distribution for the service rate. To express the service rate, mostly the linguistic expressions are used, such as “service is fast”, “service is slow” or “service is not fast enough”. Due to the fact that, it is more realistic to say that the service rate is more possibilistic than probabilistic. This structure of queuing system can be solved by fuzzy queuing models.

In this study, two servers queuing models with fuzzy service rate are investigated. Two types of membership functions; trapezoidal and triangular membership functions are defined.

2. M/F/2 Queues

One server fuzzy queuing systems had been studied by Li and Lee, Negi and Lee. In such systems interarrival times, service times or both are defined by fuzzy numbers. In this study, M/F/2 queuing systems are defined. In M/F/2 systems arrivals are Poisson and service times are fuzzy numbers. By using \(\alpha \)-level sets this system is reduced to a crisp queuing system. To derive the queue characteristics, the mean and the standard deviation of each \(\alpha \)-level sets is calculated. At each \(\alpha \)-level, service times are presented by uniform distribution and they have the interval of confidence as \([x_{a1}, x_{a2}]\). The membership function is firstly defined as trapezoidal, secondly as triangular. In the model, channels are assumed as independent and queue discipline is first come first served.

3. An Example

Simulation is used for an exampling for a M/F/2 system. Arrivals are assumed to be Poisson with 0.02 arrival rate. \(\alpha \)-levels are determined as 0, 0.05, 0.10, ... 1. At each level, random trapezoidal and triangular fuzzy service time is generated by simulation. For both fuzzy numbers, trapezoidal and triangular membership functions are formulated. Queuing characters are calculated for both models. Results are shown at Table 1.

4. Conclusion

At Table 1, \(L, L_q, W, W_q \) refers to expected number in the system, expected number in the queue, expected time in the system, expected time in the queue. The first four columns are results for triangular membership function and the last four are for trapezoidal function. As shown at the table; for both functions, characteristics values decrease up to \(\alpha = 0.65 \) or \(\alpha = 0.50 \). Although the values increase outside of this interval, it is shown that the degree of increasement is smaller than the decreaseament. It is also shown that for \(\alpha = 1 \), the values are smaller than the ones where the increasement started. If one wants a possibility of 0.3, than he
decides the possible length of queue is 4.068980 for the triangular membership function and 4.06898015 for the trapezoidal function. Other characteristics mean in the same way.

Table 1. Results for M/F/2 system

<table>
<thead>
<tr>
<th>α-levels</th>
<th>Lq</th>
<th>L</th>
<th>Wq</th>
<th>W</th>
<th>Lq</th>
<th>L</th>
<th>Wq</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>4.068980</td>
<td>21.098595</td>
<td>0.299437</td>
<td>12.043684</td>
<td>4.068980</td>
<td>21.09859486</td>
<td>0.29943694</td>
<td>12.36880</td>
</tr>
<tr>
<td>0.050</td>
<td>4.068980</td>
<td>21.098595</td>
<td>0.299437</td>
<td>12.043684</td>
<td>4.068980</td>
<td>21.09859486</td>
<td>0.29943694</td>
<td>12.36880</td>
</tr>
<tr>
<td>0.100</td>
<td>4.068980</td>
<td>21.098595</td>
<td>0.299437</td>
<td>12.043684</td>
<td>4.068980</td>
<td>21.09859486</td>
<td>0.29943694</td>
<td>12.36880</td>
</tr>
<tr>
<td>0.150</td>
<td>4.068980</td>
<td>21.098595</td>
<td>0.299437</td>
<td>12.043684</td>
<td>4.068980</td>
<td>21.09859486</td>
<td>0.29943694</td>
<td>12.36880</td>
</tr>
<tr>
<td>0.200</td>
<td>4.068980</td>
<td>21.098595</td>
<td>0.299437</td>
<td>12.043684</td>
<td>4.068980</td>
<td>21.09859486</td>
<td>0.29943694</td>
<td>12.36880</td>
</tr>
<tr>
<td>0.250</td>
<td>4.068980</td>
<td>21.098595</td>
<td>0.299437</td>
<td>12.043684</td>
<td>4.068980</td>
<td>21.09859486</td>
<td>0.29943694</td>
<td>12.36880</td>
</tr>
<tr>
<td>0.300</td>
<td>4.068980</td>
<td>21.098595</td>
<td>0.299437</td>
<td>12.043684</td>
<td>4.068980</td>
<td>21.09859486</td>
<td>0.29943694</td>
<td>12.36880</td>
</tr>
<tr>
<td>0.350</td>
<td>4.068980</td>
<td>21.098595</td>
<td>0.299437</td>
<td>12.043684</td>
<td>4.068980</td>
<td>21.09859486</td>
<td>0.29943694</td>
<td>12.36880</td>
</tr>
<tr>
<td>0.400</td>
<td>3.027069</td>
<td>18.484707</td>
<td>0.268972</td>
<td>13.207560</td>
<td>3.027069</td>
<td>18.48470691</td>
<td>0.26897212</td>
<td>13.89916</td>
</tr>
<tr>
<td>0.450</td>
<td>3.027069</td>
<td>18.484707</td>
<td>0.268972</td>
<td>13.207560</td>
<td>3.027069</td>
<td>18.48470691</td>
<td>0.26897212</td>
<td>13.89916</td>
</tr>
<tr>
<td>0.500</td>
<td>3.027069</td>
<td>18.484707</td>
<td>0.268972</td>
<td>13.207560</td>
<td>3.027069</td>
<td>18.48470691</td>
<td>0.26897212</td>
<td>13.89916</td>
</tr>
<tr>
<td>0.550</td>
<td>3.027069</td>
<td>18.484707</td>
<td>0.268972</td>
<td>13.207560</td>
<td>3.027069</td>
<td>18.48470691</td>
<td>0.26897212</td>
<td>13.89916</td>
</tr>
<tr>
<td>0.600</td>
<td>3.027069</td>
<td>18.484707</td>
<td>0.268972</td>
<td>13.207560</td>
<td>3.027069</td>
<td>18.48470691</td>
<td>0.26897212</td>
<td>13.89916</td>
</tr>
<tr>
<td>0.650</td>
<td>3.027069</td>
<td>18.484707</td>
<td>0.268972</td>
<td>13.207560</td>
<td>3.027069</td>
<td>18.48470691</td>
<td>0.26897212</td>
<td>13.89916</td>
</tr>
<tr>
<td>0.700</td>
<td>3.027069</td>
<td>18.484707</td>
<td>0.268972</td>
<td>13.207560</td>
<td>3.027069</td>
<td>18.48470691</td>
<td>0.26897212</td>
<td>13.89916</td>
</tr>
<tr>
<td>0.750</td>
<td>3.027069</td>
<td>18.484707</td>
<td>0.268972</td>
<td>13.207560</td>
<td>3.027069</td>
<td>18.48470691</td>
<td>0.26897212</td>
<td>13.89916</td>
</tr>
<tr>
<td>0.800</td>
<td>3.027069</td>
<td>18.484707</td>
<td>0.268972</td>
<td>13.207560</td>
<td>3.027069</td>
<td>18.48470691</td>
<td>0.26897212</td>
<td>13.89916</td>
</tr>
<tr>
<td>0.850</td>
<td>3.027069</td>
<td>18.484707</td>
<td>0.268972</td>
<td>13.207560</td>
<td>3.027069</td>
<td>18.48470691</td>
<td>0.26897212</td>
<td>13.89916</td>
</tr>
<tr>
<td>0.900</td>
<td>3.027069</td>
<td>18.484707</td>
<td>0.268972</td>
<td>13.207560</td>
<td>3.027069</td>
<td>18.48470691</td>
<td>0.26897212</td>
<td>13.89916</td>
</tr>
<tr>
<td>0.950</td>
<td>3.027069</td>
<td>18.484707</td>
<td>0.268972</td>
<td>13.207560</td>
<td>3.027069</td>
<td>18.48470691</td>
<td>0.26897212</td>
<td>13.89916</td>
</tr>
<tr>
<td>1.000</td>
<td>3.027069</td>
<td>18.484707</td>
<td>0.268972</td>
<td>13.207560</td>
<td>3.027069</td>
<td>18.48470691</td>
<td>0.26897212</td>
<td>13.89916</td>
</tr>
</tbody>
</table>

REFERENCES

RESUME

Dans ce travaille, on a pris fuzzy pour les temps de service sur les sistems de la canal de deux queues. Les caracteristiques des queues devinerons avec l’aide des fonctions de membreshipes qui sont triangulaire et trapesoidaire. A là fin les resultats et les solutions sont confrontes.