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In Welsch (2000) we compared a variety of ridge type regression estimators with partial |east
squares (PLS). Our results confirmed those of Frank and Friedman (1993) who showed that
PRESS cross-validated ridge regression (CVRR) performed better than cross-validated PLS and any
of the estimators considered in either paper. One estimator (a modification of the Hoerl and
Kennard generalized ridge estimator) performed very well without cross-validation in Welsch
(2000) and was second only to CVRR. In this paper we consider additional estimators of thistype.

To simplify notation, we will use the singular value decomposition (SVD) of X = UDV' with
Unxp,U'U=1I,V ap x p orthogona matrix, and D ap x p diagonal matrix with non-increasing
diagonal entries.  Since the estimators we are considering are equivariant, we will change to the
rotated coordinate system Z = XV and the generalized ridge estimator is

(1) 6 =(2'Z+K) Z'y =(2'Z2+K) Z'Za,,

where K isap x p diagonal matrix with diagonal elementskj and a, ¢ is ag, withall k=0.

Using the SV D, this becomes
(2) g =diag|r o, =07/ (A7 + k)

and ther; are the “shrinkage” factors. Note that in the Z coordinate system the t-stetistics for the
least-squares coefficients a,, arejusttj = (lley)/S with u; denoting the jth column of U and sthe

standard error of the least-squares regression.
The Hoerl and Kennard generalized ridge estimator (see Gruber, 1988) uses k; = 52/ (8.s)°
which gives

d (HK)  r=t*/(*+2).
In Welsch (2000), we found that using

2 )
4) (HKA = =2
(@) (HKA) T, [tjzﬂ]
where ¢ = Amax / Aj and \; = di® are the eigenval ues of X'X was a good choice and was beaten only
by CVRR. Since HKA isnot across-validated procedure, it is easier to compute than CVRR (and
PLS). Thisestimator was motivated by the discussion in Thorpe and Scharf (1995). They noted
that many ridge estimators tend to have avalue of r; that istoo large for directions with small A; and



that values near 0.9 for t,-2 / (t,-2 + 1) might be required before the relationship of the response
variable, y, to the principal components, z;, should begin to override the general rule of essentially
removing principal components with small A;.  However, it is natural to wonder what would
happen if we did cross-validate HKA. We tested the following functional forms:

) 1 =f(2)7 with 1=+ (Fy+D), BE =y (x+D), ) =X (¢ +D),

or

= (tf/(tf +1))g(cj) with ai(g) =c+y, 6(G)=vg, as(G)=g".
The parameter y will be chosen by cross-validation.

We used the same Monte Carlo procedures as described in Welsch (2000) which set n =50, p
= 5 or 40, with avariety of choices for the signal-to-noise ratio, correlation structure of X'X, and
settings for thetrue a;.  For each estimator, the average squared prediction error (over 100
simulations) was.

CVRR .6359 LS 1.4437
HKA .7463 PLS .8110
F1 .8165 Gl . 7565
F2 .8062 G2 71250
F3 .7459 G3 1.0998

To our surprise, only G2 made any real improvement. This attempts to let cross-validation choose
whether A max Was the right numerator for Amax / Aj.  None beat CVRR, but many bested PLS. It
appears that bringing information about tjz into the generalized ridge parameters works fairly well
without cross-validation, but does not pay off when cross-validation is available.
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RESUME
Nous considérons de nouveaux estimateurs de type régression ridge, en nous inspirant de

I'analyse Monte-Carlo de Welsch (2000) et des développement théoriques de Thorpe and Scharf
(1995).
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