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 In Welsch (2000) we compared a variety of ridge type regression estimators with partial least 
squares (PLS).  Our results confirmed those of Frank and Friedman (1993) who showed that 
PRESS cross-validated ridge regression (CVRR) performed better than cross-validated PLS and any 
of the estimators considered in either paper.  One estimator (a modification of the Hoerl and 
Kennard generalized ridge estimator) performed very well without cross-validation in Welsch 
(2000) and was second only to CVRR.  In this paper we consider additional estimators of this type. 
 To simplify notation, we will use the singular value decomposition (SVD) of X = UDVT with 
U n × p, UTU = I, V a p × p orthogonal matrix, and D a p × p diagonal matrix with non-increasing 
diagonal entries.  Since the estimators we are considering are equivariant, we will change to the 
rotated coordinate system Z = XV and the generalized ridge estimator is 
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where K is a p × p diagonal matrix with diagonal elements kj and LSα̂  is GRα̂  with all kj = 0.  

Using the SVD, this becomes 
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and the rj are the “shrinkage” factors.  Note that in the Z coordinate system the t-statistics for the 
least-squares coefficients LSα̂  are just tj = (uj

Ty)/s with uj denoting the jth column of U and s the 
standard error of the least-squares regression. 

 The Hoerl and Kennard generalized ridge estimator (see Gruber, 1988) uses ( )22
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which gives 
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In Welsch (2000), we found that using 
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where cj = λmax / λj and λj = dj
2 are the eigenvalues of XTX was a good choice and was beaten only 

by CVRR.  Since HKA is not a cross-validated procedure, it is easier to compute than CVRR (and 
PLS).  This estimator was motivated by the discussion in Thorpe and Scharf (1995).  They noted 
that many ridge estimators tend to have a value of rj that is too large for directions with small λj and 



 

 

that values near 0.9 for tj
2 / (tj

2 + 1) might be required before the relationship of the response 
variable, y, to the principal components, zj, should begin to override the general rule of essentially 
removing principal components with small λ j.  However, it is natural to wonder what would 
happen if we did cross-validate HKA.  We tested the following functional forms: 
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r t t= +  with  g1(cj ) = cj + γ,  g2(cj ) = γcj,  g3(cj ) = cj
γ. 

The parameter γ will be chosen by cross-validation. 
 We used the same Monte Carlo procedures as described in Welsch (2000) which set n = 50, p 
= 5 or 40, with a variety of choices for the signal-to-noise ratio, correlation structure of XTX, and 
settings for the true αj.  For each estimator, the average squared prediction error (over 100 
simulations) was: 
  CVRR .6359   LS  1.4437 
  HKA  .7463   PLS   .8110  
  F1  .8165   G1   .7565 
  F2  .8062   G2   .7250 
  F3  .7459   G3  1.0998 
To our surprise, only G2 made any real improvement.  This attempts to let cross-validation choose 
whether λ  max was the right numerator for λmax / λj.  None beat CVRR, but many bested PLS.  It 
appears that bringing information about tj

2 into the generalized ridge parameters works fairly well 
without cross-validation, but does not pay off when cross-validation is available. 
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RESUME 
 
 Nous considérons de nouveaux estimateurs de type régression ridge, en nous inspirant de 
l'analyse Monte-Carlo de Welsch (2000) et des développement théoriques de Thorpe and Scharf 
(1995). 
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