On Fractional Factorial Designs With Two Levels

Dharam Chopra
Wichita State University, Department of Mathematics and Statistics
1845 N. Fairmount
Wichita, Kansas 67206-0033, U.S.A.
chopra@math.twsu.edu

1. Introduction

A matrix T of size $(m \times N)$ with two elements (say, 0 and 1) is called a balanced array (B-array) of strength t ($t \neq m$, T is called full strength if $t = m$) if in every t-rowed submatrix T_0 of T, every $(t \times 1)$ vector α of weight i $(0 \leq i \leq t)$ appears with the same frequency i (say). The vector $\mu' = (\mu_0, \mu_1, \ldots, \mu_t)$ is called the index set of the array, the number of rows m its constraints, and N its runs or treatment-combinations. Obviously B-array is reduced to an orthogonal array (O-array) if $\mu_i = \mu$ (for each i), and a B-array with $t = 2$ is an incidence matrix of an incomplete block design. Besides the importance of B-arrays in combinatorics, these arrays have been extensively used in the construction of symmetrical as well as asymmetrical factorial designs. A design T is said to be balanced if its variance-covariance matrix V_T is invariant under a permutation of its factor symbols, and is of resolution V if one can estimate all the effects up to and including two-factor interactions with the assumption that higher order interactions are negligible. B-arrays with $t = 4$, under certain conditions, give rise to balanced, resolution V designs.

In this paper we present some combinatorial results on B-arrays, and give some balanced resolution V designs with $m = 12$ and $96 \# N \# 99$.

2. Some Combinatorial Results on B-arrays

Definition: A B-array $T (m \times N)$ is said to be trim if it does not contain any m-rowed column vector with weight 0 or m.

The following result is from Srivastava and Chopra (1971).

Theorem 2.1. Consider a resolution V balanced design T with index set $\mu' = (\mu_0, \mu_1, \mu_2, \mu_3, \mu_4)$ and $m = 12$ then we have

$$tr \ V_t = \frac{c_0}{\mu_2} + \frac{c_1}{\mu_2} + \frac{c_3}{\mu_2},$$

where $c_i \in \mathbb{R}$ are polynomials in $\mu_i \in \mathbb{R}$ (clearly $\mu_2 > 0$).

Theorem 2.2. No trim B-array exists with $m = 12, 96 \# N \# 99$ and

Theorem 2.3. A trim B-array with $\mu_2 = 1$, $m = 12$, and $N (96 \leq N \leq 99)$ exists only if $N = 66, 78, \text{ and } 90$.

Remark: An m-rowed B-array T_k obtained by writing all the distinct vectors of weight k $(0 \leq k \leq m)$ is
Clearly an array of full strength with index set \(\binom{m-t}{k-i} ; i = 0,1,2,\ldots,t \). Here \(\binom{a}{b} = 0 \) if \(a < b \). For the array \(T_k \), clearly \(N = \binom{m}{k} \). The symbol \(\alpha_k T_k \) \((\alpha_k > 0,\ \text{an integer})\) denotes the \(B \)-array obtained by writing each column of \(T_k \) exactly \(\alpha_k \) times, and \(\sum_{k=1}^{l} \alpha_k T_k \) \((l \leq m)\) stands for the juxtaposition of such arrays.

Theorem 2.4. The only trim \(B \)-arrays with \(96 \leq N \leq 99 \), \(m = 12 \), and \(\mu_2 = 1 \) are obtained from \(\alpha_1 T_1 + \alpha_2 T_2 + \alpha_{10} T_{10} + \alpha_{11} T_{11} \) with \((\alpha_2,\alpha_{10}) = (1,0)\) or \((0,1)\) and \((\alpha_1,\alpha_{11}) = (1,1), (2,0), \) or \((0,2)\).

3. Construction of Trace-optimal Designs

It is quite clear that one has to construct appropriate \(B \)-arrays of strength four in order to construct balanced designs of resolution \(V \). We rely on the results of the previous section to obtain these \(B \)-arrays. For a given \(N \) there are, in general, many \(B \)-arrays with \(t = 4 \). For each \(N \), satisfying \(96 \leq N \leq 99 \), we obtain all the arrays, and compute the trace of the variance-covariance matrix for each, and present here the index set \(\mu' \) of the one with the minimum trace. We observe the index sets \(\mu' \) of the \(B \)-arrays giving rise to trace-optimal balanced designs are \((34 + k, 8, 1, 2, 16)\) with \(0 \leq k \leq 3 \). For these designs the values of \(\text{tr} \ V_T \) are 3.928, 3.912, 3.907, and 3.892 respectively.

For each design we list also the elements of the variance-covariance matrix (10,000 times their actual values which are: \(\text{var} \ (\hat{\mu}) = 1367, 1224, 1118, 1035; \text{cov} \ (\hat{\mu}, \hat{A}_j) = 28, 24, 21, 18; \text{cov} \ (\hat{A}_i, \hat{A}_j) = -35, -30, -27, -25; \text{var} \ (\hat{A}_j) = 299, 298, 294, 293; \text{cov} \ (\hat{A}_i, \hat{A}_j) = -24, -25, -25, -25; \text{cov} \ (\hat{A}_i, \hat{A}_j) = 18, 18, 18, 18; \text{cov} \ (\hat{A}_i, \hat{A}_j) = -4, -4, -4, -4; \text{var} \ (\hat{A}_j) = 520, 519, 519, 519; \text{cov} \ (\hat{A}_i, \hat{A}_j) = -7, -7, -7, -7; \text{cov} \ (\hat{A}_i, \hat{A}_j) = 10.8, 10.6, 10.5, 10.5.

REFERENCE

RESUME

On a obtenu des plans fractionnaires équilibrés trace-optima de resolution \(V \) des séries de \(2^{12} \) pour chaque valeur de \(N \) (le nombre de traitements) dans l'intervalle \(96 \leq N \leq 99 \).