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1. Introduction

The problem of missing observations in the analysis of designed experiment is an old one,
and it has usually been dealt with by replacing methods, i.e. looking for values to susbstitute
the missing ones in the incomplete data matrix. Healy and Westmacott (1956) introduced an
iterative procedure that, at each iteration, replaces the missing value by its expected value, given
the previous estimates. When Dempster, Laird and Rubin (1977) defined the EM algorithm,
the procedure by Healy and Westmacott was presented as an example of the EM algorithm
in the analysis of variance designs under the normal linear model. Note that the goal of
the EM algorithm is not to replace missing values in the incomplete data matrix, but the
maximum likelihood estimation of parameters; this is obtained by substituting the expected
value of the functions of missing values in the loglikelihood function. As a consequence, before
attempting the estimation via the EM algorithm, it is necessary to establish which are the
estimable parametric functions. If the EM algorithm is run, it gives numerical estimates for the
parameters on the basis of replaced values. When enough data are missing, the design matrix
may not be of maximal rank, and these estimates may have no statistical meaning.

In the literature on the analysis of experiments with missing values, the book by Dodge
(1985) offers a different viewpoint, where replacement of the missing values has no role to play,
the goal of the analysis being the estimation of the estimable parameters or of the parametric
functions. Estimable parameters are found by analyzing the incidence matrix: an iterative
procedure, called the R process, derives a final matrix which defines which are the estimable
parametric functions. Several methods are presented, together with programs, for different
kinds of models.

We suppose that that {Yj;x} is a collection of independent and normally distributed
random variables each having a common unknown variance 02 and each having an expectation
of the form:

E[Yije] = p+ i + B;

where ¢ = 1,...,1, j = 1,...,J and k = 1,...,n,;. We are interested in estimating and
submitting to hypothesis testing the parameters u, o, 8;,0%. We suppose that there are n;;

observations in cell (7, j) and that each row, as well as each column as at leat one observation.

2. REM algorithm for experiments with missing data

We present now a procedure which starts from the matrix of observations and, for a chosen
model, establishes the estimable parameters or the estimable parametric functions.



As it applies a modification of the R process followed by the EM algorithm, this algo-
rithm is called REM. We describe it for additive two-way classification models, but it can be
generalized for more general additive models. As before, the two factors are indicated by « and
3, the factors having respectively T and J levels, so that @' = [y, oy ..., a7, B1--., 5]

From the observed data the algorithm derives an initial matrix Mj of dimension I x J:
m;;=1 if at least one observation is available for the the i-th level of factor a and for the j-th
level of factor 3; otherwise m;;=0.

The R process is applied to M, and the final matrix M is obtained: M has ones in the cells
corresponding to the estimable values. The rows and the columns of M are permuted so that
the permuted final matrix M* is block diagonal; the permutations orders are provided in two
vectors, 1 for rows and ¢ for columns, so that the original matrix can be easily reconstructed.

The procedure then determines the diagonal-block structure of M*; let () be the number
of blocks and denote them by My, My, ..., M. Each block is characterized by a set r, of row
indeces (referring to levels of the a-factor) and a set ¢, of column indeces (referring to levels of
[-factor), which identify the estimable expected values of the form:

where o, € 7, and ;4 € ¢,.

If M is not block-diagonal, that is () = 1, then the design is completely connected and
all cells are estimable. The design matrix is of maximal rank, and the algorithm derives the
complete estimable data matrix Y,, adding one missing value for any combinations of 7 and j
not present in the available (observed) data matrixY,; the EM algorithm is applied only once
to this matrix.

If M* is block diagonal, then for each of the () blocks the procedure extracts from the
original data set one subsets, according to the block structure of M* and the permutation vectors
rq and c,, such that the corresponding design matrix X, is of maximal rank, ¢ =1,...,Q. The
REM algorithm then derives, for each of the Q blocks, an estimable data matrix Y, ,, and the
EM algorithm is applied to each subset, giving the maximum likelihood estimates of the cells
values.
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RESUME

L’application directe de l'algorithme EM pour un jeu de donnée provenant des plans
d’expérience avec des données manquantes, peut mener a des estimations de fonctions paramétriques
non estimables. Dans cet article nous présentons un ajustement de I’algorithme EM pour des
modeles de classification additive qui empéchera 'utilisateur d’obtenir des résultats non fiables.
L’algorithme proposé est appelé REM.
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