Iteratively Re-weighted Least Squares Method for Outlier Detection in Linear Regression

Nedret Billor
Cukurova University, Department of Mathematics
Faculty of Arts and Sciences
01330, Adana, Turkey
nbillor@mail.cu.edu.tr

Samprit Chatterjee
New York University, Department of Statistics and Operations Research
44 West 4th. Street
New York, NY, 10012-1126, USA
schatter@stern.nyu.edu

Ali S. Hadi
The American University in Cairo, Department of Mathematics
P. O. Box 2511, Cairo
Cairo 11511, Egypt
aahadi@aucegypt.edu

1. Introduction

The presence of high-leverage points, individually or in groups, makes it very difficult to identify the outliers in the regression data and to obtain a robust fit. An iteratively reweighted least squares procedure as a robust fit for the standard linear model, \(y = X\beta + \epsilon \), was proposed by Chatterjee and Mächler (1997). This method is not very effective when there is extensive masking because it is based on the standard measure of leverage \(p_{ii} \) which is affected by the masking problem. In Section ?? we present a procedure which works in the presence of masking.

2. The Method Proposed

The proposed procedure is described as follows:

Step 0: Obtain the initial weights as follows:

1. Let \((d_1, \ldots, d_n)\) be the normalized BACON distances obtained in the final step of the BACON Algorithm (Billor, Hadi, and Velleman, 2000) when it is applied to \(X\).

2. Let \(m_d\) be the median of \((d_1, \ldots, d_n)\). Replace \(d_i\) by \(d_i = 1/\max(d_i, m_d)\).
3. Compute the squared normalized version of the new \(d_i \) by

\[
 d_i = \frac{d_i^2}{\sum_{i=1}^{n} d_i^2}.
\]

4. Let \(\hat{\beta}^0 \) be the weighted least squares estimates of the regression coefficients when using \(d_i \) in (??) as a weight for the \(ith \) observation.

Step \(j \): For \(j = 1, 2, \ldots \), until convergence, let \(\mathbf{e}^{j-1} = \mathbf{y} - \hat{\mathbf{y}}^{j-1} = \mathbf{y} - \mathbf{X} \hat{\beta}^{j-1} \) be the residuals of the last fit. Replace \(e_i^{j-1} \) by its squared normalized version, which is given by

\[
 e_i^{j-1} = \frac{(e_i^{j-1})^2}{\sum_{i=1}^{n} (e_i^{j-1})^2}.
\]

Compute \(a_i = \frac{1 - d_i}{\text{max}(e_i^{j-1}, m_i^{j-1})} \), where \(m_i^{j-1} \) is the median of \((e_1^{j-1}, \ldots, e_n^{j-1}) \) in (??). Finally, compute the new weights,

\[
 w_i^j = \frac{a_i^2}{\sum_{i=1}^{n} a_i^2}.
\]

Let \(\hat{\beta}^j \) be the weighted least squares estimates of the regression coefficients when using \(w_i^j \) as a weight for the \(ith \) observation.

As described in the full paper, the method is complemented by a simple diagnostic plot which displays clearly the nature of all the data points, distinguishing among outliers, leverage points, and well-fitted points. The proposed procedure is also illustrated by data sets which are known to have severe masking and swamping.

REFERENCES

RESUME

A new method for the detection of outliers in linear regression is proposed. The method is based on iteratively reweighted least squares. The weights depend on robust measures of residuals and leverages. This makes the method effective in dealing with the distorting effect of masking and swamping.

Nous proposons une nouvelle méthode pour la détection des outliers en régression linéaire, basée sur une itération de la méthode des moindres carrés. Les coefficients sont obtenus à partir de mesures robustes des résidus et leverages. Ceci rend la méthode efficace pour traiter les distortions dues au masking et au swamping.