Kernel Density Estimation: the General Case

by

C.C.Y. Dorea
Departamento de Matemática
Universidade de Brasília
70910-900 Brasília-DF - Brazil
cdorea@mat.unb.br

Abstract

For estimating a density function \(p(x) \) the kernel weighted average over the empirical distribution \(F_n(\cdot) \) constitute a general class of consistent and asymptotically normal estimators,

\[
p_n(x) = \int_{-\infty}^{+\infty} \frac{1}{h} K\left(\frac{x-y}{h}\right) dF_n(y) = \frac{1}{nh} \sum_{k=1}^{n} K\left(\frac{x-X_k}{h}\right)
\]

where the kernel \(K(\cdot) \) and the window \(h = h_n > 0 \) are suitably chosen, and \(X_1, X_2, \ldots, X_n \) are independent random variables with a common density \(p(x) \).

In this note, we consider the problem of kernel estimates in the general case. Let \(p(x) \) be a density with respect to a \(\sigma \)-finite measure \(\nu \) on \((E, \mathcal{E}) \) where \(E \subset \mathbb{R}^d \) and \(\mathcal{E} \) is a \(\sigma \)-field of subsets of \(E \). For each \(h > 0 \) and each \(x \in E \) let \(W(h, x, .) \) be defined on \(E \) and define the estimates

\[
p_n(x) = \frac{1}{nh} \sum_{k=1}^{n} W(h, x, X_k) \ , \ h = h_n
\]

where \(X_1, X_2, \ldots, X_n \) are independent and have a common density \(p(x) \).

We present sufficient conditions for \(p_n(x) \) to be consistent in quadratic mean, strongly consistent and asymptotically normal. Also, it is shown that our results include the classical results for continuous densities on \(\mathbb{R}^d \) and extend some of the results of kernel estimates for discrete distributions.