Grey Trend Models

Wang Ziliang
Liaocheng Teachers University, Department of Mathematics and System Science
Liaocheng City, Shandong Province, P.R.China
zlwang@lctu.edu.cn

1. Grey Model GM(1,1)ₜ

Grey model GM(1,1) has being widely used in many areas. Based on this grey model, Wang presented a kind of time-varying grey model GM(1,1)ₜ.

Let raw data series \(x^{(0)} = (x^{(0)}(1), x^{(0)}(2), \ldots, x^{(0)}(n)) \), \(x^{(1)} \) be the 1-AGO series generated from \(x^{(0)} \), \(x^{(1)}(k) = \sum_{i=1}^{k} x^{(0)}(i) \), and \(x^{(1)} = (x^{(1)}(1), x^{(1)}(2), \ldots, x^{(1)}(n)) \), \(x^{(0)} \) and \(x^{(1)} \) conform to the definition of the conditions of grey differential equation, then the data of \(x^{(0)} \) and \(x^{(1)} \) satisfy

\[
y_N = B \alpha \]

iff the residual series \(\varepsilon \) submits to the principle of least square sum, that is

\[
J = \varepsilon^T \varepsilon = \min \varepsilon = y_N - B \alpha
\]

the vector \(\alpha = (B^T B)^{-1} B^T y_N \). Constructing the whitening function with above \(a, b, c \),

\[
\frac{dx^{(1)}}{dt} + ax^{(1)} = bt + c
\]

then its solution is

\[
\hat{x}^{(1)}(k + 1) = \frac{b}{a} (k + 1) - \frac{b - ac}{a^2} x^{(0)}(1) + \frac{b - ac}{a^2} e^{-ak} + \frac{b}{a} e^{nk} - \frac{b}{a} e^{nk} + \frac{b - ac}{a^2} e^{-ak}, k = 1, \ldots, n - 1
\]

\[
\hat{x}^{(1)}(1) = x^{(0)}(1)
\]

where \(\hat{x}^{(1)}(k + 1) \) is the value calculated from model, then its reduced value \(\hat{x}^{(0)}(k + 1) \) satisfies

\[
\hat{x}^{(0)}(k + 1) = \hat{x}^{(1)}(k + 1) - \hat{x}^{(0)}(k),
\]

that is

\[
\hat{x}^{(0)}(k + 1) = \frac{b}{a} x^{(0)}(1) + \frac{b - ac}{a^2} (1 - e^a) e^{-ak}, k = 1, \ldots, n - 1
\]

\[
\hat{x}^{(0)}(1) = x^{(0)}(1)
\]

2. Grey Gompertz Model

Let the raw data \(x^{(0)} = (x^{(0)}(1), x^{(0)}(2), \ldots, x^{(0)}(n)) \), and \(x^{(0)}(i) > 0, i = 1, 2, \ldots, n \). Transforming \(x^{(0)} \) with logarithmic transformation, and let \(y^{(0)}(i) = \ln(x^{(0)}(i)), i = 1, 2, \ldots, n \), then we obtain new series
\(y^{(0)}=(y^{(0)}(1),y^{(0)}(2),\ldots,y^{(0)}(n))\). According to section 1, construct grey model \(GM(1,1)_T\), and the reduced model is

\[
\frac{1}{y^{(0)}(k+1)} = \frac{b}{a} + (y^{(0)}(1) - \frac{b}{a} + \frac{b-ac}{a^2})(1-e^{-ak}), k = 1,2,\Lambda , n-1
\]

\[
y^{(0)}(1) = y^{(0)}(1)
\]

Transforming \(\frac{1}{y^{(0)}}\) with exponential transformation, we obtain

\[
\hat{y}^{(0)}(k+1) = \exp\left(\frac{b}{a} + \ln(y^{(0)}(1)) - \frac{b}{a} + \frac{b-ac}{a^2}(1-e^{-ak})\right), k = 1,2,\Lambda , n-1
\]

\[
\hat{y}^{(0)}(1) = \hat{y}^{(0)}(1)
\]

The above model is called to be grey Gompertz model.

3. Grey Logistic Model

Let the raw data \(x^{(0)}=(x^{(0)}(1),x^{(0)}(2),\ldots,x^{(0)}(n))\), and \(x^{(0)}(i)>0, i=1,2,\ldots,n\). Transforming \(x^{(0)}\) with reciprocal transformation, and let \(y^{(0)}(i)=\frac{1}{x^{(0)}(i)}, i=1,2,\ldots,n\), then we obtain new series \(y^{(0)}=(y^{(0)}(1),y^{(0)}(2),\ldots,y^{(0)}(n))\). According to section 1, construct grey model \(GM(1,1)_T\), and the reduced model is

\[
\frac{1}{y^{(0)}(k+1)} = \frac{b}{a} + (y^{(0)}(1) - \frac{b}{a} + \frac{b-ac}{a^2})(1-e^{-ak}), k = 1,2,\Lambda , n-1
\]

\[
y^{(0)}(1) = y^{(0)}(1)
\]

Transforming \(\frac{1}{y^{(0)}}\) with reciprocal transformation, we obtain

\[
\hat{x}^{(0)}(k+1) = \frac{1}{\frac{b}{a} + \frac{1}{x^{(0)}(1)} - \frac{b}{a} + \frac{b-ac}{a^2}(1-e^{-ak})}, k = 1,2,\Lambda , n-1
\]

\[
\hat{x}^{(0)}(1) = \hat{x}^{(0)}(1)
\]

The above model is called to be grey Logistic model.

REFERENCE

RÉSUMÉ

Modèles Tendanciels de Système Gris

Dans ce papier nous démontrons deux nouveaux modèles tendanciels —modèle gris de Gompertz et modèle gris de Logistic, en utilisant la théorie du système gris.